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Abstract. The magnetizations of Ni1−xMox single crystals withx = 4, 6, 8 and 10%
by weight have been measured at 4.2 K using a vibrating-sample magnetometer and a
superconducting quantum interference device (SQUID). The magnetizations of the alloy at these
low concentrations and at 0 K have been theoretically determined by using the tight-binding
linearized muffin-tin orbital method coupled with augmented-space recursion. The theoretical
data are compared with the experiment.

1. Introduction

The equilibrium phase diagram of the Ni1−xMox system exhibits a continuous face-centred-
cubic disordered solid solution over the range 0< x 6 0.12. The alloy shows a series of
ordered phases at higher concentrations. The phase diagram for the NiMo alloy system has
been given by Daset al [1]. They have studied the phase diagram for higher concentration
ranges using the tight-binding linearized muffin-tin approximation (TB-LMTO) method
based on the local density approximation (LDA), proposed by Andersen and Jepsen [2].
As far as we are aware, no similar study of the disordered regime has been carried out
in detail. In this communication, we shall report such a study, using the same TB-LMTO
methodology as before but combining this with the augmented-space recursion proposed
by one of us [3] to take care of the disorder configuration averaging. We shall evaluate
the local magnetization as a function of the Mo concentration. Simultaneously, we shall
measure the magnetization of four alloy systems in this disordered alloy regime (x = 0.04,
0.06, 0.08 and 0.1). In parallel, we shall compare our results with experimental work on
the magnetization and Curie temperatures of single crystals of NiMo [4].

2. Theoretical details

The TB-LMTO method has been described in great detail earlier [5]. We refer the reader
to monograph [5] for technical details.

Description of magnetic phases within the local spin-density approximation (LSDA)
involves the study of the evolution of local magnetic moments in the vicinity of ion cores
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because of the distribution of the valence electron charge. Each lattice site in the face-
centred-cubic structure is occupied by an ion core—in our case, randomly by either Ni or
Mo. We shall associate a cell or a sphere with each ion core and assume that the charge
contained in the sphere belongs to that ion core alone. Ideally, such cells or spheres should
not overlap. In the traditional Kohn–Korringa–Rostoker (KKR) method this is certainly
the case. However, in the atomic sphere approximation (ASA) which we shall use in our
TB-LMTO version, this division of space is to a certain extent arbitrary. Within these cells
the valence electrons carrying spinσ ‘see’ a binary random spin-dependent potentialV λσ (r),
whereλ = Ni or Mo andσ = ↑ or ↓.

The charge density within the cells can be obtained from the partially averaged Green
functions:

ρσ (r) = −(1/π) Im
∑
L

∫ EF

−∞

[
x〈〈GMo,σ

LL (r, r, E)〉〉 + (1− x)〈〈GNi,σ
LL (r, r, E)〉〉

]
dE

where〈〈GMo,σ
LL (r, r, E)〉〉 and〈〈GNi,σ

LL (r, r, E)〉〉 are partially averaged Green functions, with
the siter occupied by a Mo- or Ni-ion core potential corresponding to spinσ . The Mo
sites are almost spin independent (except for a very small induced moment) and do not
appreciably contribute to local moment densities.

The averaging is done over configurations of the random alloy. A powerful technique
for carrying out this averaging is the augmented-space recursion [6]. The method allows
us to go well beyond the traditional single-site coherent potential approximations and has
been applied successfully to a wide variety of systems [7, 8]. The convergence of the ASR
has been established recently [10], so any approximation that we impose on the recursion
is controlled by tolerance limits preset by us. The calculations are self-consistent in the
LSDA sense.

The initial TB-LMTO potential parameters are obtained from suitable guessed potentials
as described in the article by Andersen and Jepsen [2]. In subsequent iterations the potential
parameters are obtained from the solution of the Kohn–Sham equation{

− h̄
2

2m
∇2+ V νσ − E

}
φνσ (rR, E) = 0 (1)

where

V νσ (rR) = V νσcore(rR)+ V νσHar(rR)+ V νσxc (rR)+ VMad. (2)

Hereν refers to the species of atom sited atR andσ is the spin component. The electronic
position within the atomic sphere centred atR is given byrR = r −R. The core potentials
are obtained from atomic calculations and are available for most atoms.

The Hartree potential needs discussion. Let us denote the atomic sphere centred atR by
SR. If we wish to obtain the Hartree potential within the atomic sphereSR when an atom
of the typeν is sited atR, the configuration space at the siteR is projected onto the fixed
configurationν, while the configurations at the remaining sites are, say, random binary. Let
us denote the ‘average state’ by{ν ∈ R ⊗ ∅}. The reader is referred to Dasguptaet al [6]
for the details of the configuration notation and the basic augmented-space theorem. We
have

V
ν↑

Har(rR) = e2
∫
SR

d3r ′R
ρν↑(r

′
R)

|rR − r ′R|
+ · · · + e2

∑
R′′ 6=R

∫
SR′′

d3r ′R′′
〈ρ(r ′R′′)〉
|rR − r ′R′′ |

· · ·

+ e2
∑
R′′ 6=R

∫
SR′′

d3r ′R′′
δρ(r ′R′′)
|rR − r ′R′′ |
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where

δρ(r ′R′′) =
−1

π
Im
∫ EF

−∞
dE

[〈{r ′R′′ ⊗ A ∈ R′′ ⊗ ∅}|G̃(E)⊗ M̃R′′ |{r ′R′′ ⊗ A ∈ R′′ ⊗ ∅}〉 · · ·

− 〈{r ′R′′ ⊗ B ∈ R′′ ⊗ ∅}|G̃(E)⊗ M̃R′′ |{r ′R′′ ⊗ B ∈ R′′ ⊗ ∅}〉].
G̃(E) is the augmented-space resolvent(zĨ − H̃ )−1 andM̃R′′ is the configuration operator,
e.g. for binary randomness̃MR′′ = I ⊗ · · · ⊗MR′′ ⊗ I ⊗ · · · and, if x is the concentration
of the A component, it has a representation(

0
√
x(1− x)√

x(1− x) 1− x

)
.

The first two terms are identical to the usual expressions for the CPA [11]. Of course, the
partially averaged and averaged charge densities in the ASR have the effects of configuration
fluctuation of the immediate environment of the atomic site associated with the atomic
sphere included. The last term represents configuration fluctuations in the charge densities
associated with atomic spheres other thanSR. This correction is taken only up to the
nearest-neighbour environment ofSR.

The exchange–correlation potential is a functional of the charge densitiesρν↑(rR) and
ρν↓(rR). We have used the von Barth–Hedin form of the exchange functional.

The treatment of the Madelung potential in a random alloy has always presented
problems. We adopt a procedure suggested by Drchalet al [12] and regularly used in
CPA calculations within the TB-LMTO method. We choose the atomic sphere radii of
the components in such a way that they preserve the total volume on average and the
individual atomic spheres are almost neutral. This ensures that total charge is conserved,
but each atomic sphere carries no excess charge. However, we are careful that such a
choice does not violate the overlap criterion of Andersen and Jepsen [2]. In the ASR-
LSDA self-consistency loop, there is charge transfer between these spheres; however, at the
end of the self-consistency iterations, the spheres are approximately neutral and hence do
not contribute to a Madelung energy. This prescription is to an extentad hoc, and there is
no guarantee in general that we will be able to find such atomic sphere radii. However, the
procedure has proved rather successful in many earlier CPA [12] and ASR [13] calculations
on magnetic alloys and we shall adopt it here. For NiMo, the Vegard’s law averaged atomic
sphere radii are obtained fromrNi = 2.602 au andrMo = 2.922 au. The atomic radii chosen
for negligible charge transfer are shown in table 1.

Table 1. The atomic sphere radii for Ni and Mo with varying concentration of Mo.

x rav rMo rNi

0.0200 2.6092 2.9280 2.6018
0.0400 2.6164 2.9300 2.6016
0.0600 2.6235 2.9250 2.6018
0.0800 2.6306 2.9250 2.6017
0.1000 2.6376 2.9220 2.6020
0.1200 2.6446 2.9220 2.6020

The radii are fairly independent of the Mo concentration, with that for Mo being
consistently larger than that for Ni.

Recently, an alternative method has been suggested by Korzhavyiet al [14] which goes
beyond the mean-field approach and includes charge-fluctuation effects very similar to the
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ASR treatment of the Hartree potential. We believe that the method suggested is superior to
the one that we have adopted, but leave its implementation within the ASR for later work.

As in the CPA calculations, we iterate until the total energy and moments of the charge
density converge. In this sense our calculations are self-consistent in the LSDA sense.

For the random ferromagnetic phase, we proceed as follows: we consider all cells to
be identical in that they all carry identical average charge densities. We shall borrow the
notation of Andersen and Jepsen [2] to write down functions likef̃ (rR), which are equal to
f (r) when r lies in the atomic sphere labelled byR and zero outside. The ferromagnetic
charge densities are defined as follows:

ρ1(r) =
∑
R

ρ̃↑(rR)

ρ2(r) =
∑
R

ρ̃↓(rR).

The magnetic moment per cell (atom) is then defined by

m = (1/N)
∫

d3r [ρ1(r)− ρ2(r)] = (1/N)
∑
R

∫
r6S

d3r [ρ̃↑(rR)− ρ̃↓(rR)]

= (1/N)
∑
R

∫
r6S

d3r mR(rR).

Since all cells are identical, the above calculation need be done only for one typical
cell. Within the TB-LMTO-ASA the cells are replaced by inflated atomic spheres and the
remaining interstitial space is neglected. The problem is then one of a binary alloy with an
almost non-magnetic charge density due to the Mo ion cores and a magnetic one due to the
Ni ones.

For the calculation of the component-projected averaged density of states of the
ferromagnetic phase we have used a real-space cluster of 400 atoms and an augmented-
space shell up to the sixth-nearest neighbour from the starting state. Eight pairs of
recursion coefficients were determined exactly and the continued fraction terminated by
the analytic terminator due to Luchini and Nex [9]. In a recent paper, Ghoshet al [10]
have shown the convergence of related integrated quantities, like the Fermi energy, the
band energy, the magnetic moments and the charge densities, within the augmented-space
recursion. The convergence tests suggested by the authors were carried out to the prescribed
accuracies. We noted that at least eight pairs of recursion coefficients were necessary to
provide Fermi energies and magnetic moments to the required accuracies. We have reduced
the computational burden of the recursion in the full augmented space by using the local
symmetries of the augmented space to reduce the effective rank of the invariant subspace
in which the recursion is confined [6] and using the seed recursion methodology [15] with
fifteen energy seed points distributed uniformly across the spectrum. Both of the reduction
techniques have been described in detail in the papers referred to above, and readers
are referred to them for details. It is important to emphasize this point, since erroneous
statements have been made to the effect that although the augmented-space recursion method
is attractive mathematically, it was not feasible to apply it as a computational technique for
real alloys. Furthermore, it has been shown [6] that augmented-space recursion with an
analytic terminatoralways produces herglotz results†, whether we use the homogeneous

† A function f (z) is called herglotz if (i) its singularities lie on the real axis in the complexz-plane, (ii) its
imaginary part is negative in the upper halfz-plane and positive in the lower halfz-plane and (iii)f (z) ∼ 1/z as
z→∞ along the real axis.
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disorder model as in this paper or the version including short-ranged order [7] or local
lattice distortions [8].

We have chosen the Wigner–Seitz radii of the two constituent atoms Mo and Ni in
such a way that the average volume occupied by the atoms is conserved. Within this
constraint we have varied the radii such that the final configuration has neutral spheres.
This eliminates the necessity of including the averaged Madelung energy part in the total
energy of the alloy. The definition and computation of the Madelung energy in a random
alloy had excited controversy in recent literature, and to date no satisfactory resolution of
the problem exists. Simultaneously, we made sure that the sphere overlap remains within
the 15% limit prescribed by Andersen.

The calculations have been made self-consistent in the LSDA sense—that is, at each
stage the averaged charge densities are calculated from the augmented-space recursion and
the new potential is generated by the usual LSDA techniques. This self-consistency cycle
converged in both total energy and charge to errors of the order of 10−5. We have also
minimized the total energy with respect to the lattice constant. The quoted results are those
for the minimum configuration. No short-ranged order due to chemical clustering has been
taken into account in these calculations, nor any lattice distortions due to the size differences
between the two constituents.

The estimates of the Curie temperature were obtained from the magnetic pair
energies [16]. The pair energies are defined as follows: at two sites labelledr and r ′

in a completely random paramagnetic background, we replace the potential by that of either
the up-spin ferromagnetic Ni or the down-spin ferromagnetic Ni. We shall denote the Green
function of this system byGNi,σσ ′

LL (r, r, E), σ being the spin type at the siter (either↑ or
↓) andσ ′ that at the siter ′. The pair energy is defined as

E(R) =
∫ EF

−∞
dE E[−(1/π) Imm(G

Ni,↑↑
LL (r, r, E)+GNi,↓↓

LL (r, r, E) · · ·

− GNi,↑↓
LL (r, r, E)−GNi,↓↑

LL (r, r, E))].

Here R = r − r ′. We may either estimate the above directly, or, to increase the
accuracy, we may use the orbital peeling method of Burke [17]. The latter is an extension
of the recursion method, where small differences of large energies (as in the definition of
the pair energy) are obtained directly and accurately from the recursion continued-fraction
coefficients. Note that we have assumed that the dominant contribution to the pair energy
comes from the band contribution and the rest approximately cancel out. The simplest
Bragg–Williams estimate of the Curie temperature is

TC = (1− x)E(0)/κB

where

E(0) = E(q = 0) and E(q) =
∑
R

exp(iqR)E(R).

Since the pair energy is short ranged, a reasonable estimate ofE(0) is∑
n<3

ZnE(Rn)

where Rn is the nth-nearest-neighbour vector andZn is the number ofnth-nearest
neighbours. The Bragg–Williams approach overestimates the Curie temperature, and its
generalization, the cluster variation method, yields better quantitative estimates. We have
restricted ourselves to the Bragg–Williams nearest-neighbour pair energy approximation.
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3. Results and discussion

We notice first that in the detailed phase diagram for NiMo [1], the solid-solution phase
occupies a small part of the phase diagram belowx = 0.12 and extends down to the lowest
temperatures. In this region there is no transition to an ordered phase at low temperatures.
This is the concentration region that we have focused on in this communication.
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Figure 1. The partial densities of states of Ni (left) and Mo (right) at (i) 2, (ii) 6, (iii) 10 and
(iv) 14 at.% of Mo. Dashed curves show the results for the minority spin-states and full curves
those for the majority-spin states.

Figure 1 shows the partial densities of states for Ni and Mo. The full curves show the
majority-spin partial densities of states and the dashed curves those for the minority spin.
The Mo atomic concentrations are (i) 2%, (ii) 4%, (iii) 10% and (iv) 14%. The exchange
splitting of the Ni d states decreases with increasing Mo concentration. The effects of
exchange on Mo are very small and there is a very small induced moment on Mo atoms
at low concentrations. Since we are interested in the shape of the densities of states, the
figure shows them in arbitrary units scaled between 0 and 1. The Fermi energies lie in the
region just above−0.2 Ryd.

Figure 2 shows the local magnetic moment in Bohr magnetons per atom as a function
of the Mo concentration. The short-dashed curve shows CPA results, while the long-
dashed curve shows the results from the ASR. In the low-concentration regime, the CPA
consistently gives larger magnetic moments. To compare with experiment, we convert the
magnetic moment to magnetization in units of kA m−1. The ASR results are shown in
figure 3. The experimental data of Khanet al [4] are shown as squares. We first note
that the ASR results for the regime of very low Mo concentration agree rather well with
experiment, while the CPA results are consistently higher. Khanet al suggest that the
magnetization vanishes at around a concentration of 8% of Mo. The rigid-band model
predicts a transition at around 10%, while both the CPA and the ASR predict a transition at
around 12 to 13% of Mo. How do we reconcile these discrepancies? The rigid-band model
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Figure 2. The magnetic moment on Ni as a
function of the Mo concentration. Stars correspond
to the augmented-space calculations while the squares
correspond to the CPA.

Figure 3. The magnetization as a function of the
Mo concentration at 0 K obtained from the theoretical
estimates.

assumes that the bands of Ni and Mo are identical but rigidly displaced from each other.
Both the CPA and our ASR provide more qualitatively accurate pictures. Our theoretical
results actually calculate the magnetization per atom in a ferromagnetic arrangement. Here
the local and global magnetizations are the same. The experimental results yield the average
global magnetization

m = (1/N)
∑

mloc.

NiMo, like all typical spin-glass alloys, is a solid solution of a magnetic constituent,
Ni, and a non-magnetic one, Mo. Therefore, as for all spin-glass alloys, we expect
a paramagnetic–spin-glass transition in the concentration region 8%–13% of Mo. The
experimental global magnetization experiments will show a vanishing magnetization,
whereas our calculations will not show this. More detailed experiments, such as Mössbauer,
low-field dc-susceptibility and hysteresis studies, need to be done for this concentration
region to get a better picture. This regime promises richness and variety in magnetic
behaviour.

Figure 4 plots the Curie temperature versus the concentration of Mo. Qualitatively,
the behaviour is in agreement with the results of Khanet al. The Bragg–Williams approx-
imation used here is known to consistently overestimate the transition temperature. These
results also indicate the absence of a transition from a paramagnetic to an ordered phase
at around 12% of Mo. Again, this is not surprising in the context of the discussion above.
Our theoretical model also does not incorporate the possibility of a spin-disordered phase
which becomes energetically favourable at around 8% Mo concentration.

We conclude by making the remark that the concentration regime 8%–14% Mo requires
both more careful experimental studies as well as more elaborate theoretical models which
incorporate the possibility of the spin-disordered phase as well.
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